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Summary: An expeditious and stereoselective synthesis ofa key chiral intermediate (2) for the

synthesis of the therapeutically usejid PG12analog Cicaprost~is described.
@1997 ElsevierScienceLtd.

Primary pulmonary hypertension (PPH) is an increasingly common and fatal disease. The only life-

sustaining treatments for PPH at present are either 24-hour infusion therapy with prostaglandin 12(PGIz) or

combined heart-lung transplant.1 Long lived, metabolically stable, and orally active PGIz analogs such as

Cicaprost~ (1)2 (dose 0.5 mgjkg, tl/2 ca. 1 h), offer the prospect of a far more acceptable dosing regimen for

the first option.3,4 Unfortunately, published syntheses of Cicaprost are long and possibly impractical.s

Described herein is a simple and efficient synthetic route to the key intermediate 2 which corresponds to the

omega-sidechain of Cicaprost.
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We have recently reported a highly enantioselective catalytic reduction of ct,~-ynones to propargylic

alcohols as shown in Scheme 1.6,7 For example, treatment of ketone 3 and oxazaborolidine 4 (0.05 equiv) with

catecholborane (1.2 equiv) in CHZCIZat -78 “C produced the (R)-acetylenic alcohol 5 in %’90 enantiomeric excess

(ee) and 98% yield. The high level of asymmetric induction observed in this process is the result of a repulsive

long range steric interaction between the terminal triisopropylsilyl group and the bulky trimethylsilylmethyl

substituent on the boron atom of the catalyst, thus favoring binding of the catalyst to the ketone electron lone pair

anti to the triisopropylsilylalkynyl substituent. As a result, the triisopropylsilylalkynyl substituent functions as

the larger group (RL) versus the n-pentyl group (R.s).
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The effectiveness of this methodology led us to study the reduction of isopropyl ketone 6 to alcohol 8 as a

model for the preparation of 2. Utilization of (S)-B-CH2SiMe3 catalyst 4 at -78 ‘C provided 8 in only 72Y0ee.

(S)-B-n-Bu catalyst 7, however, resulted in a substantial improvement in enantioselectivity to 90% ee.c$ A

further increase to 97% ee was obtained by (1) performing the reduction at -60 ‘C, and (2) prc-cooling the CH2C12

solution of catecholborane by slow addition down the side of the flask.g.lo
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These optimized conditions are ideally suited to the stereoselective synthesis of omega-sidechain 2 as

outlined in Scheme 2. Treatment of methyl-(S)-(+)-3-hydroxy-2-methylpropionatc (9)11and 7 equiv of pyridine

at O“C with 1.3 equiv ofp-toluenesulfonyl chloride for 10.5 h provided tosylate 10 (8870),which was converted

to known iodide 11 under Finkelstein conditions (NaI, acetone, 60 “C, 2 h, 9%. yield) .12,13Iodide 11 and

3 equiv of activated zinc dust14 in THF were heated at 40 “C for 4 h.15 The resulting organozinc reagent was

added to 0.9 equiv of copper(I) cyanide and 1.8 equiv of LiCl in THF at -10 “C, stirred 10 rein, cooled to -78 “C,

treated with l-bromo-l-butyne,16 and warmed to -60 ‘C for 20 h to provide alkynyl ester 12 in 60% yield.13,17

N,O-Dirnethylhydroxylamine hydrochloride (3 equiv) in benzene at O‘C was treated with 3 cquiv of Me@ (2 M

in hexanes), and stirred 1 h.lg Alkynyl ester 12 (1 equiv) was added and the solution was heated at 50 “C for 3 h.

The reaction was quenched by the addition of MeOH, diluted with CH2C12, stirred with Na2S04-10H20

(9 equiv), and filtered to afford after silica gel chromatography Weinreb amide 13 in 80% yield, [cc]% +6.9 (c

1.3, CH2C12). Lithium triisopropylsilylacetylide (1.3 equiv of triisopropylsilylacetylenelg, 1.2 equiv of n-BuLi,

THF, -78 “C to O “C, 30 rein) was added to a solution of 13 in THF at -10 ‘C. After 30 min the reaction was

quenched with saturated NELIC1solution to give ketone 14 in 80% yield, [et]% -10.2 (c 1.3, CH2C12). To a

solution of 14 and 0.05 equiv of (R)-B-n-Bu catalyst ent-7 in CH2C12 at -60 ‘C was added 1.2 equiv of

catecholborane in CH2C12which afforded, after 3 h, alcohol 2 in 97~0diastereomeric excess (de) and 99% yield,
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[et]% +40.8 (C 1.75, CH2C12).20,21 Utilization of catalyst 7 in the reduction of 14 produced the other

diastereomer in 96% de and 99% yield, ([al%-6.4 (C 0.55, CH2C12)), demonstrating that the reduction of chir~

ketone 14 is a ~agent-controlled process.

The stereoselective preparation of 2 described herein proceeds in 6 steps and 33% overall yield starting

from readily available methyl-(S)-(+) -3-hydroxy-2-methylpropionate (9). This synthesis highlights an effective

carbon-carbon bond formation utilizing an enantiopure homoenolate for the rapid construction of requisite ketone

14 and a practical application of long range steric effects in the chiral oxazaborolidine-cataly zed reduction of

ketones.22
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